



## **ROY'S INSTITUTE OF COMPETITIVE EXAMINATION**

The West Bengal Central School Service Commission

## 2nd SLST 2025 MATHEMATICS

[CLASSES: IX - X]

- 1. If  $A = \{a, b, c, d\}$  then the number of non-empty proper subsets of A is
  - (A) 14
  - (B) 15
  - (C) 16
  - (D) 17
- 2. If the radial velocity of a particle is proportional to the transverse velocity, then the path is
  - (A) a conic
  - (B) an equiangular spiral
  - (C) a cardiode
  - (D) a straight line
- 3. Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^2$ ,  $x \in \mathbb{R}$ , then f is
  - (A) only injective
  - (B) only surjective
  - (C) both injective and surjective
  - (D) neither injective nor surjective
- 4. Let (G, o) be a group. Define a mapping  $f: G \to G$  by  $f(x) = x^{-l}$ ,  $x \in G$ . Then f is
  - (A) only injective
  - (B) only surjective
  - (C) not well defined
  - (D) bijective
- 5. The value of  $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$  is
  - (A) 1
  - (B)  $\frac{1}{2}$
  - (C)  $\frac{1}{4}$
  - (D) does not exist

- 6. If x, y are real then the value of  $|e^{x+ly}|$  is
  - (A)  $e^x$
  - (B)  $e^{|x|}$
  - (C)  $e^{\sqrt{x^2+y^2}}$
  - (D)  $e^{|x|+|y|}$
- 7. A line  $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-4}{1}$  lies on the plane ax 3y + 5z + d = 0 Then the value of 'a' is
  - (A) -1
  - (B) 1
  - (C)  $\frac{1}{2}$
  - (D) 3
- 8. The variance of 30 observations was found to be 10. If each observation is multiplied by 5 then the new variance of the observations will be
  - (A) 50
  - (B) 15
  - (C) 250
  - (D) 150
- 9. In the ring  $(Q, +, \bullet)$ 
  - (A) only 1 and -1 are units.
  - (B) each element is unit.
  - (C) only non-zero element is unit.
  - (D) there is no unit element.
- 10. The equation xy px qy + pq = 0 represents  $(p, q \in \mathbb{R})$ 
  - (A) an ellipse
  - (B) a circle
  - (C) a hyperbola
  - (D) a pair of straight lines
- 11. If we take  $\pi = 3.14$  instead of 3.14159, then the absolute error correct upto 2 significant figures is
  - (A) 0.15
  - (B) 0.00159
  - (C) 0.015
  - (D) 0.0016
- 12. An integrating factor for the differential equation  $(x+1)\frac{dy}{dx} y = e^{3x}(x+1)^2$  is
  - (A)  $\frac{1}{(1+x)^2}$
  - (B) x + 1
  - $(C) \frac{1}{x^2 + 1}$
  - (D)  $x^2 + 1$

- 13. In an examination, 30% of the students failed in Mathematics, 15% failed in Chemistry and 10% failed in both Mathematics and Chemistry. A student is selected at random. If he has failed in Chemistry then the probability that he has passed in Mathematics is
  - (A)  $\frac{1}{2}$
  - (B) 1
  - (C) 0
  - **(D)**  $\frac{1}{3}$
- 14. Two eigenvectors of a square matrix A over a field F corresponding to two distinct eigenvalues of A are always
  - (A) equal
  - (B) independent
  - (C) dependent
  - (D) null
- 15. If  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(n) = (-1)^n$ ,  $n \in \mathbb{Z}$  and  $g: \mathbb{Z} \to \mathbb{Z}$  is defined by g(n) = 2n,  $n \in \mathbb{Z}$ , then *gof* and *fog* are respectively
  - (A)  $2(-1)^n$  and  $1, n \in \mathbb{Z}$
  - (B) 1 and  $2(-1)^n$ ,  $n \in \mathbb{Z}$
  - (C) 2 and  $(-1)^n$ ,  $n \in \mathbb{Z}$
  - (D) 1 and  $(-1)^n$ ,  $n \in \mathbb{Z}$
- 16. The envelope of the family of straight lines  $y = mx + \sqrt{a^2m^2 + b^2}$  (a, b are constants and m is the parameter)
  - (A) Circle
  - (B) Ellipse
  - (C) Hyperbola
  - (D) Parabola
- 17. If the roots of the equation  $ax^2 + bx + c = 0$  (a,  $b \ne 0$ ) are in the ratio r : 1 then the value of  $\frac{r}{(r+1)^2}$  is
  - (A)  $\frac{bc}{a}$
  - (B)  $\frac{ca}{b}$
  - (C)  $\frac{ca}{b^2}$
  - (D)  $\frac{bc}{a^2}$
- 18.  $\int_0^{\pi/2} \sin^5 x \, dx =$ 
  - (A) 1
  - (B)  $\frac{15}{8}$
  - $(C) \frac{8}{15}$
  - (D)  $\frac{8}{15}\pi$

19. The value of

$$\lim_{n\to\infty} \left[ \frac{n}{n^2} + \frac{n}{1^2 + n^2} + \frac{n}{2^2 + n^2} + \dots + \frac{n}{(n-1)^2 + n^2} \right]$$
 is

- $(A) \frac{\pi}{4}$
- (B)  $\frac{\pi}{2}$
- $(C)\frac{\pi}{6}$
- (D) 1
- 20. If two straight lines  $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$  and  $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$  intersect each other, then the value of k is
  - (A)  $\frac{2}{9}$
  - $(B) \frac{9}{2}$
  - (C) 9
  - (D) 1
- 21. For  $A = (a_{ij})_{m \times n}$ , m, n > 1, if  $a_{ij} = 1$  for all i, j then rank (A) is
  - (A) 1
  - (B) 0
  - (C) Number of rows of A
  - (D) Number of columns of A
- 22. The equation  $x^2 + xy + y^2 + x + y = 1$  represents
  - (A) an ellipse
  - (B) a hyperbola
  - (C) a parabola
  - (D) a pair of straight lines
- 23. If  $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$  then  $|\vec{a} \vec{b}|$  is equal to
  - (A)  $\sqrt{2}$
  - **(B)**  $\sqrt{3}$
  - (C)  $2\sqrt{3}$
  - (D)  $\sqrt{5}$
- 24. The Trapezoidal rule applied to  $\int_0^2 f(x) dx$  gives the value 4 and Simpson's  $\frac{1}{3}$  rule gives the value 2. Then f(1) is
  - (Given, h = length of subinterval = 1)
  - (A) 1
  - (B) 0
  - (C) -1
  - (D)  $\frac{1}{2}$

- 25. Given that  $x = A\cos(pt \alpha)$  where A, p,  $\alpha$  are constants, then the false statement is
  - $(A) \frac{d^2x}{dt^2} = -p^2x$
  - (B)  $\frac{d^3x}{dt^3} = -p^2 \frac{dx}{dt}$
  - $(C) \frac{d^2x}{dt^2} = px^2$
  - (D) x = f(t), for some function f
- 26. Let  $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$  and

$$T = \{(x, y, z) \in \mathbb{R}^3 : x = z = 0\}.$$
 Then

- (A) S is a subspace of  $\mathbb{R}^3$  but not T.
- (B) T is a subspace of  $\mathbb{R}^3$  but not S.
- (C) neither S nor T is a subspace of  $\mathbb{R}^3$ .
- (D) both S and T are subspaces of  $\mathbb{R}^3$ .
- 27. If a, b are real then the value of  $\tan\left(i\log\frac{a-ib}{a+ib}\right)$  is
  - $(A) \frac{2ab}{a^2 b^2}$
  - (B)  $\frac{ab}{a^2+b^2}$
  - (C)  $\frac{ab}{a^2 b^2}$
  - (D)  $\frac{2ab}{a^2 + b^2}$
- 28. The set  $\{(x_1, x_2) : (x_1^2 + x_2^2 \le 1, x_1, x_2 \ge 0) \}$  is
  - (A) a convex set with two extreme points.
  - (B) a convex set with infinite number of extreme points.
  - (C) a convex set with no extreme point.
  - (D) not a convex set.
- 29. A function  $f: \mathbb{R} \to \mathbb{R}$  is defined by f(x) = |x|. Then
  - (A) f is differentiable at x = 0
  - (B) f is differentiable everywhere on  $\mathbb R$  .
  - (C) f is not differentiable only at x = 0.
  - (D) f is not differentiable at any point of  $\mathbb R$  .
- 30. The number of real solutions of the equation  $x^2 3|x| + 2 = 0$  is
  - (A) 0
  - (B) 1
  - (C) 2
  - **(D)** 4

- 31. If  $f(x) = \cos^2 x + \sec^2 x$  ( $x \neq (2n+1)\frac{\pi}{2}$ ,  $n \in \mathbb{N} \cup \{0\}$ ), then which one of the following is always true? (A) f(x) < 1 (B) f(x) = 1 (C) 1 < f(x) < 2 (D) f(x) > 2
- 32. In an abelian group, if O(a) = 5 and O(b) = 7 then  $(ab)^{14}$  is equal to
  - (**B**) **a**<sup>-1</sup> (C) *ab*

(D) *b* 

(A) a

- 33. If *A* and *B* be two  $n \times n$  real square matrices and  $\alpha$  be a real constant then which of the following is true?
  - (A)  $det(\alpha A + B) = \alpha det A + det B$ (B)  $det(\alpha A - B) = \alpha det A - det B$
  - (C)  $det(\alpha A \cdot B) = \alpha det A det B$ (D)  $det(\alpha A \cdot B) = \alpha^n det A det B$
- 34. The Simpson's  $\frac{1}{3}$  Rule is applicable when number of subinterval is
  - (A) Prime
  - (B) Odd (C) Even
  - (D) Multiple of 3
- 35. If the initial approximation  $(x_0)$  of a root of the equation  $x^2 + x 5 = 0$  is 2 then the next approximation  $(x_1)$  of the root is
  - (A)  $\frac{11}{5}$
  - (B)  $\frac{7}{5}$
  - (C)  $\frac{9}{5}$
  - (D)  $\frac{13}{5}$
- 36. If f(x) is an even function then  $\int_0^x f(t)dt$  is
  - (A) an even function
  - (B) an odd function
  - (C) neither even nor odd function
  - (D) zero function
- 37. The order of the differential equation whose general solution is  $y = 2ax + a^2$  is
  - (A) 1 (B) 2 (C) 3 (D) undefined

38. An experiment consists in throwing a die 5 times and noting the number of sixes. The experiment was repeated 200 times with the following results:

No. of sixes: 0 1 2 3 4 5 Frequency: 58 86 40 14 2

Then the sample mean is

- (A) 1.04
- (B) 1.08
- (C) 1.05
- (D) 0.08
- 39. If A be a  $2 \times 2$  non-singular square matrix then adj (adj A) is
  - $(A) A^2$
  - $(\mathbf{B})A$
  - (C)  $A^{-1}$
  - (D)  $A^{-2}$
- 40. The series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  is convergent when
  - (A) p = 0
  - (B) p < 0
  - (C) p > 0
  - (D) p > 1
- 41. For what value of x the vectors  $x\hat{i} 4\hat{j} + 5\hat{k}$ ,  $\hat{i} + 2\hat{j} + \hat{k}$  and  $2\hat{i} \hat{j} + \hat{k}$  are coplanar?
  - (A)  $\frac{3}{29}$
  - (B)  $\frac{29}{3}$
  - (C)  $\frac{20}{3}$
  - (D) 0
- 42. The set  $S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = 0\}$  is
  - (A) not a subspace of  $\mathbb{R}^3$
  - (B) a subspace of  $\mathbb{R}^3$  and dim(s) = 1
  - (C) a subspace of  $\mathbb{R}^3$  and dim(s) = 2
  - (D) a subspace of  $\mathbb{R}^2$  and dim(s) = 2
- 43. The solution (1, 1, 0, 2) to the system

$$x_1 + x_2 + x_3 = 2$$

$$x_1 + x_2 - 3x_3 = 2$$

$$2x_1 + 4x_2 + 3x_3 - x_4 = 4$$
 is

- (A) a basic feasible solution.
- (B) a basic but not feasible solution.
- (C) a non-degenerate basic feasible solution.
- (D) not a basic solution.

44. A function  $f: \mathbb{R} \to \mathbb{R}$  is defined by

$$f(x) = 2x, x \in \mathbb{Q}$$

$$=1-x, x \in \mathbb{R} \setminus \mathbb{Q}$$

then

- (A) f is continuous at every point of  $\mathbb R$ .
- (B) f is continuous at  $x = \frac{1}{2}$ .
- (C) f is continuous at  $x = \frac{1}{3}$ .
- (D) f is continuous at x = 0.
- $45. \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx =$ 
  - (A)  $\frac{\pi}{2}$
  - $(B) \frac{\pi}{4}$
  - (C)  $\frac{1}{2}$
  - (D) 1
- 46. The value of the integral  $\int_{e}^{e^2} \frac{dx}{x \log x}$  is
  - (A) 1
  - (B) log 2
  - (C) 2log 2
  - $(D) \frac{1}{\log 2}$
- 47. For a rectilinear motion of a particle if an Impulse *I* changes its velocity from *u* to *v* and *E* is the change of kinetic energy, then
  - (A)  $E = I\left(\frac{2u + 3v}{5}\right)$
  - **(B)**  $E = I\left(\frac{u+v}{2}\right)$
  - (C)  $E = I\left(\frac{u+2v}{3}\right)$
  - (D)  $E = I\left(\frac{u+v}{5}\right)$
- 48. The equations of the straight lines bisecting the angles between the pair of lines  $3x^2 + xy 2y^2 = 0$  is
  - (A)  $x^2 10xy y^2 = 0$
  - (B)  $x^2 + 10xy y^2 = 0$
  - (C)  $x^2 + 10xy + y^2 = 0$
  - (D)  $x^2 + xy + y^2 = 0$

- 49. In an LPP, the decision variables can take
  - (A) any real values.
  - (B) integer values only.
  - (C) any non-negative real values.
  - (D) non-negative integer values only.
- 50. If n = 10,  $\sum x = 20$ ,  $\sum x^2 = 200$  then the variance of the associated distribution is
  - (A) 4
  - **(B)** 16
  - (C) 9
  - (D) 3
- 51. The identity element on the set  $\mathbb{Z}$  of integers under the binary operation '\*' defined by  $a * b = a + b + 1 \ \forall \ a, b \in \mathbb{Z}$  is
  - (A) 0
  - (B)-1
  - (C) 1
  - (D) 2
- 52. Let f(x, y) be defined on a domain D in the xy-plane and  $(a, b) \in D$ . Further,  $f_y$  exists in the neighbourhood of (a, b) and  $f_{yx}$  is continuous at (a, b), then
  - $(A) f_{xy} = f_{yx}, \forall (x, y) \in D$
  - (B) at the point  $(a, b), f_{xy} \neq f_{yx}$
  - (C) at the point  $(a, b) f_{xy} = f_{yx}$
  - (D) at the point  $(a, b) f_{xy}$  may not exist
- 53. If n is a positive integer > 1 and z is a complex number satisfying the equation  $z^n = (1+z)^n$ , then
  - (A)  $Re(z) \leq 0$
  - (B) Re(z) > 0
  - (C) Re(z) = 1
  - (D) Im(z) = 0
- 54. Which of the following functions does not satisfy the conditions of Rolle's theorem in [-1, 1]?
  - $(A) x^2$
  - (B)  $\frac{1}{x^2 + 4}$
  - (C)  $\frac{1}{x}$
  - (D)  $\sqrt{x^2+3}$

- 55. If pair of lines  $x^2 2pxy y^2 = 0$  and  $x^2 2qxy y^2 = 0$  be such that each pair bisects the angle between the other pair, then
  - (A) pq = 1
  - (B) pq = -2
  - (C) p + q = -1
  - **(D)** pq = -1
- 56. The curve  $\frac{2}{r} = \frac{1}{2} + \frac{1}{4}\cos\theta$  represents
  - (A) a parabola
  - (B) a hyperbola
  - (C) an ellipse
  - (D) a straight line
- 57. The eigenvalues of a real skew symmetric matrix are only
  - (A) real number
  - (B) irrational number
  - (C) purely imaginary number or zero
  - (D) rational number
- 58. Which of the following statements is true?
  - (A) Every convergent sequence is bounded.
  - (B) Every bounded sequence is convergent.
  - (C) An unbounded sequence may be convergent.
  - (D) Every monotone sequence is convergent.
- 59. The direction cosine of the normal to the plane Z = 5 is
  - (A) (0, 0, 1)
  - (B)(1,0,0)
  - (C)(0,1,0)
  - (D)  $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$
- 60. The value of  $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$  is
  - (A) a rational number
  - (B) an irrational number
  - (C) a natural number
  - (D) an integer

\_\_\_\_\_× \_\_\_\_