

ROY'S INSTITUTE OF COMPETITIVE EXAMINATION

The West Bengal Central School Service Commission

2nd SLST 2025 MATHEMATICS

[CLASSES: XI - XII]

1. If a plane has intercepts *l*, *m*, *n* on the axes and be at a distance '*p*' from the origin, then

(A)
$$l^2 + m^2 + n^2 = p^2$$

(B)
$$l^{-2} + m^{-2} + n^{-2} = p^2$$

(C)
$$l^{-2} + m^{-2} + n^{-2} = p^{-2}$$

(D)
$$l^2 + m^2 + n^2 = p^{-2}$$

- 2. Which of the following statements is false?
 - (A) The arbitrary union of open sets is open.
 - (B) The arbitrary union of closed sets is closed.
 - (C) The arbitrary intersection of closed sets is closed.
 - (D) The finite intersection of closed sets is closed.
- 3. Let $A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{bmatrix}$. Then the eigenvalues of A are
 - (A) 1, 1, 1
 - (B)-1,-1,1
 - (C) 1, 1, -1
 - (D) -1, -1, -1
- 4. The vector equation $\mathbf{r} = \mathbf{a} + \mathbf{t}\mathbf{b}$ (*t*, a parameter; \mathbf{a}, \mathbf{b} constant vectors), represents
 - (A) a straight line passing through points having position vectors \vec{a} and \vec{b} .
 - (B) a straight line passing through point $\tilde{\mathcal{Q}}$ and parallel to $\tilde{\mathcal{D}}$.
 - (C) a straight line passing through point \tilde{a} and perpendicular to \tilde{b} .
 - (D) a straight line perpendicular to both \tilde{a} and \tilde{b} .

- 5. The rank of the matrix $\begin{bmatrix} 2 & 1 & 4 & 3 \\ 3 & 2 & 6 & 9 \\ 1 & 1 & 2 & 6 \end{bmatrix}$ is
 - (B) 1
 - (C) 2
 - (D) 4
- 6. Let A be a real square matrix of order 3. Then which of the following statements is always true?
 - (A) $tr(AA^T) = 0$
 - (B) $tr(AA^T) \ge 0$
 - (C) $tr(AA^T) \leq 0$
 - (D) $tr(AA^T) \neq 0$
- 7. Due to application of the force $\vec{F} = 3\vec{i} + 2\vec{j} + 4\vec{k}$ a particle changes its position from the point $\vec{i} + \vec{j} + \vec{k}$ to the point $2\vec{i} 3\vec{j} + 4\vec{k}$. The work done by the force is
 - (A) 7 unit
 - (B) 5 unit
 - (C) 0 unit
 - (D) 2 unit
- 8. Let $f(x, y) = x^5 y^2 \tan^{-1}\left(\frac{y}{x}\right)$. Then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ equals
 - (A) 2f(x, y)
 - **(B)** 7f(x, y)
 - (C) 3f(x, y)
 - (D) 5f(x, y)

9. Let $\{\chi_n\}_1^{\infty}$ be a convergent sequence of real

numbers. Then the sequence $\{\chi_n\}_{1}^{\infty}$ is

- (A) bounded.
- (B) unbounded.
- (C) bounded below but unbounded above.
- (D) bounded above but unbounded below.
- 10. The operation $div(\vec{r})$ gives
 - (A) 3
 - (B) 0
 - (C) \vec{r} .
 - (D) $3\vec{r}$
- 11. Which of the following sets is not countable?
 - $^{(A)}\left\{ \frac{1}{n}:n\in\mathbb{N}\right\}$
 - $^{(B)}Z$
 - (C) $\{\sqrt{x}: x \in (0,1)\}$
 - (D) $\{x \in \mathbb{R} : \sin x = 0\}$
- 12. The function $y = |x 2025|, x \in \mathbb{R}$ is continuous
 - (A) only at x = 2025.
 - (B) everywhere except at x = 2025.
 - (C) only at x = 0
 - (D) everywhere
- 13. Consider the statement "For each n, there exists an abelian group of order n". In this statement n is
 - (A) any positive integer.
 - (B) only a prime number.
 - (C) only an even integer.
 - (D) only an odd integer.
- 14. The minimum value of 3x + 2y when x, y are positive real numbers satisfying the condition $x^2y^3 = 48$ is
 - (A) 10
 - (B)5
 - (C) $\frac{48}{5}$
 - (D) $\frac{5}{48}$

- 15. $\lim_{x \to \infty} \left(1 + \frac{1}{2n}\right)^{3n}$ is equal to
 - (A) $e^{2/3}$
 - (B) $e^{3/2}$
 - (C) e
 - (D) 0
- 16. In a simplex method, if there is a tie in selecting the departing vectors, the next solution is bound to be
 - (A) optimal
 - (B) infeasible
 - (C) non-degenerate
 - (D) degenerate
- 17. $\Delta^{10}[(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)]$ has the value
 - (A) 0
 - (B) 1
 - (C) abcd
 - (D) 10!abcd
- 18. If G be a group of order p^2 where p is a prime, then G must
 - (A) be a cyclic group.
 - (B) be a non-commutative group.
 - (C) be a commutative group.
 - (D) have an element of order 2.
- 19. The order of convergence of Newton-Raphson method is
 - (A) 1
 - (B) 2
 - (C)3
 - (D) 4
- 20. For all α , β in a Euclidean space V
 - (A) $(\alpha, \beta) = 0$ implies $||\alpha + \beta|| = ||\alpha \beta||$ but not conversely.
 - (B) $\|\alpha + \beta\| = \|\alpha \beta\|$ implies $(\alpha, \beta) = 0$ but not conversely.
 - (C) $\|\alpha + \beta\| = \|\alpha \beta\|$ implies and implied by $(\alpha, \beta) = 0$
 - (D) The relations $\|\alpha + \beta\| = \|\alpha \beta\|$ and $(\alpha, \beta) = 0$ are independent.

21. $\int_{-1}^{3} |x| dx$ has been evaluated numerically by

Trapezoidal and Simpson's $\frac{1}{3}$ rule, taking equal subintervals. Then

- (A) Trapezoidal rule gives the better result than Simpson's $\frac{1}{3}$ rule.
- (B) Simpson's $\frac{1}{3}$ rule gives the better result than Trapezoidal rule.
- (C) Both the rules give better result.
- (D) The results of these two methods cannot be compared
- 22. Let $f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 2-x, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Then $\lim_{x \to c} f(x)$ exists
 - (A) for all values of $c \in \mathbb{R}$.
 - (B) for $c \neq 1$.
 - (C) for c = 1 only.
 - (D) for no values of c.
- 23. The K.E. of a body rotating about an axis is—
 - (A) $\frac{1}{2}MK^2\dot{q}^2$
 - (B) $MK^2\dot{\theta}^2$
 - (C) $\frac{1}{3}MK^2\theta^2$
 - $^{(D)} \mathit{MK}^2 \ddot{\theta}$

(M-mass of the body, K-radius of gyration about the axis, θ -angle between a line fixed in body and a line fixed in space)

- 24. The value of $\begin{vmatrix} a^2 & a & 1 \\ b^2 & b & 1 \\ c^2 & c & 1 \end{vmatrix}$; $a,b,c \in \mathbb{R}$ is
 - (A) (a-b)(b-c)(c-a)
 - (B) -(a-b)(b-c)(c-a)
 - (C) (a-b)(b+c)(c-a)
 - (D) -(a-b)(b+c)(c-a)

25. A relation ρ on \mathbb{Z} defined by $a\rho b$ $(a, b \in \mathbb{Z})$

holds if and only if a - b < 3. Then

- (A) ρ is only reflexive.
- (B) ρ is reflexive and symmetric.
- (C) ρ is reflexive and transitive.
- (D) ρ is an equivalence relation.
- 26. If $x^3 + 3px + q(p, q \in \mathbb{R})$ has a factor of the form $(x \alpha)^2$, then
 - (A) $p^2 + 4q = 0$
 - (B) $p^2 + 4q^3 = 0$
 - (C) $q^2 + 4p^3 = 0$
 - (D) $q^2 + 4p = 0$
- 27. The 3rd central moment for Normal distribution $N(\mu, \sigma)$ is
 - (A) $3\sigma^3$
 - (B) $2\sigma^3$
 - $(C) \sigma^3$
 - (D) 0
- 28. The area of the region bounded by $x = \pm 1$, y = 0 and $y = x^2$ is
 - (A) $\frac{1}{3}$ square unit
 - (B) $\frac{2}{3}$ square unit
 - (C) 1 square unit
 - (D) 2 square unit
- 29. Let $y_1(x)$ and $y_2(x)$ be two solutions of $\frac{dy}{dx} = x$ with

the initial conditions $y_1(0) = 0$ and $y_2(0) = 1$. Then

- (A) y_1 and y_2 will intersect at the origin.
- (B) y_1 and y_2 will intersect at (0, 1).
- (C) y_1 and y_2 will intersect at (1, 0).
- (D) y_1 and y_2 will never intersect
- 30. Let $A = \left\{1, 1 + \frac{1}{1!}, 1 + \frac{1}{1!} + \frac{1}{2!}, 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!}, \cdots\right\}$ The

supremum of A

- (A) is an irrational number.
- (B) is a rational number.
- (C) does not exist.
- (D) is an integer.

- 31. If A contains 2 elements and B contains 4 elements, then the power set of $A \times B$ will contain
 - (A) 2⁶ elements
 - (B) 2²³ elements
 - (C) 2^{3^2} elements
 - (D) 3²² elements
- 32. If each proper subgroup of a group is commutative, then the group
 - (A) is always commutative.
 - (B) is always cyclic.
 - (C) is of prime order.
 - (D) may not be a commutative group.
- 33. The equation of the straight line through the point (α , β , γ) which is parallel to *z*-axis is—

(A)
$$\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-g}{1}$$

(B)
$$\frac{x-\alpha}{1} = \frac{y-\beta}{1} = \frac{z-\gamma}{0}$$

(C)
$$\frac{x-\alpha}{1} = \frac{y-\beta}{1} = \frac{z-\gamma}{1}$$

(D)
$$\frac{x-\alpha}{1} = \frac{y-\beta}{0} = \frac{z-\gamma}{1}$$

34. If $J_n = \int_0^{\pi/4} \tan^n x \, dx$ where $n \in \mathbb{N} - \{1\}$ then

(A)
$$J_n + J_{n-2} = \frac{-1}{n-1}$$

(B)
$$J_n - J_{n-2} = \frac{1}{n-1}$$

(C)
$$J_n + J_{n-2} = \frac{1}{n-1}$$

(D)
$$J_n - J_{n-2} = \frac{-1}{n-1}$$

- 35. The line segment x + 2y = 1 ($0 \le x \le 1$) is revolved about x-axis through 360°. Then the volume of the solid generated is—
 - (A) $\frac{\pi}{6}$ cubic unit
 - (B) $\frac{\pi}{12}$ cubic unit
 - (C) $\frac{\pi}{8}$ cubic unit
 - (D) $\frac{\pi}{10}$ cubic unit
- 36. The value of $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$ is
 - (A) 0
 - (B) 1
 - (C) $\frac{\pi^2}{4}$
 - (D) $\frac{\pi^2}{2}$
- 37. Let *V* be a real vector space with $\{\alpha, \beta, \gamma\}$ as a basis and let $S = \{\alpha + \beta + \gamma, \beta + \gamma, \gamma\}$. Then
 - (A) S is linearly dependent.
 - (B) S is linearly independent but $L(S) \neq V$.
 - (C) S is a basis of V.
 - (D) L(S) is not a subset of V.
- 38. The probability of getting the r-th success at the n-th trial of a Bernouli trial B(n, p) is
 - (A) ${}^{n}C_{r}p^{r}q^{n-r}$
 - (B) $^{n-1}C_{r-1}p^rq^{n-r}$
 - (C) $^{n-1}C_{r-1}p^{r-1}q^{n-r}$
 - (D) $^{n-1}C_{r-1}p^rq^{n-r-1}$
- 39. The number of generators of the group (**Z**₁₀₀, +) of integers modulo 100 is—
 - (A) 9
 - **(B) 40**
 - (C) 12
 - (D) 8
- 40. If a particle moves on a plane such that its radial and cross radial velocities are equal, then its path will be
 - (A) circle
 - (B) straight line
 - (C) equiangular spiral
 - (D) ellipse

- 41. Let $f_n(x) = x^n, x \in [0, 1]$ and $n \in \mathbb{N}$. Then
 - (A) $\{f_n\}_{n=1}^{\infty}$ is not pointwise convergent on [0, 1].
 - (B) $\{f_n\}_{n=1}^{\infty}$ is pointwise convergent but not uniformly convergent on [0, 1].
 - (C) $\{f_n\}_{n=1}^{\infty}$ is uniformly convergent on [0, 1].
 - (D) $\{f_n\}_{n=1}^{\infty}$ is convergent only for x = 0.
- 42. The linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x, y, z) = $(x-y, x+2y, y+3z), (x, y, z) \in \mathbb{R}^3$. Then rank of T is
 - (A) 0
 - (B) 1
 - (C)2
 - (D) 3
- 43. The pole of the plane lx + my + nz = p with respect to the sphere $x^2 + y^2 + z^2 = a^2$ is
 - (A) (al^2, am^2, an^2)
 - (B) (la^2, ma^2, na^2)
 - (C) $\left(\frac{la^2}{p}, \frac{ma^2}{p}, \frac{na^2}{p}\right)$ (D) (lpa^2, mpa^2, npa^2)
- 44. Let f be a bounded function on [a, b] and P_1 be a partition of [a, b]. If P_2 be a refinement of P^1 , then
 - (A) $L(P_1; f) \leq L(P_2; f)$
 - (B) $U(P_2; f) \le L(P_1; f)$
 - (C) $U(P_1; f) \le U(P_2; f)$
 - (D) $L(P_2; f) \ge U(P_1; f)$
- 45. Which of the following statements is false?
 - (A) Every cyclic group is commutative.
 - (B) Every group of prime order is cyclic.
 - (C) There exists a group of order 4 which is commutative but not cyclic.
 - (D) Every group of order 4 is cyclic.
- 46. If A be real matrix of order 3 with det A = 9, then det (adjA) equals to
 - (A) 18
 - (B) 81
 - (C)9
 - (D) 81

- 47. Let A be a 3×3 real matrix with eigenvalues 1, -1, 3.
 - (A) $A^2 + A$ is non-singular.
 - (B) A^2 –A is non-singular.
 - (C) $A^2 + 3A$ is non-singular.
 - (D) A^2 –3A is non-singular.
- 48. Let A be a set of 3 elements and B be a set of 4 elements. Then the total number of mappings from *A* to *B* is
 - (A) 3^4
 - **(B)** 4^3
 - (C) 12
 - (D) 6
- 49. The value of $\frac{1}{2} \int_{0}^{\infty} x^{7} e^{-\sqrt{x}} dx$ is

 - (C) $2 \times 15!$
 - (D) 15!
- 50. The asymptotes of the curve $x^2 y^2 = a^2$ are
 - (A) $y = \pm x$
 - (B) $y = \pm 2x$
 - (C) $v = \pm 3x$
 - (D) x = 0, y = 0
- 51. The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n \text{ is}$
 - (A) e
 - (B) $\frac{1}{a}$
 - $(C) e^2$
 - ∞ (D)
- 52. The series of function $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}, x \in \mathbb{R} \text{ is}$ uniformly convergent
 - (A) for all $x \in \mathbb{R}$.
 - (B) only for x = 0.
 - (C) only for $x \in (-1, 1]$.
 - (D) only for $x \in [-1, 1]$.

- 53. The digit in the unit place of 3^{100} is
 - (A) 1
 - (B)3
 - (C) 0
 - (D) 9
- 54. The pair of straight lines $x^2 2pxy y^2 = 0$ and $x^2-2qxy-y^2=0$ be such that each pair bisects the angles between the other pair, then
 - (A) pq = 1
 - (B) pq = -1
 - (C) p + q = 1
 - (D) p + q = -1
- 55. The principal value of argument z where $z = 1 + i \tan \frac{3\pi}{5}$ is
 - **(A)** $-\frac{2\pi}{5}$
 - (B) $\frac{2\pi}{5}$
 - (C) $\frac{\pi}{5}$
 - (D) $\frac{\pi}{5}$
- 56. The ring $(\mathbb{Z}_n, +, \bullet)$ is an integral domain if and only
 - (A) n is a prime.
 - (B) n is an integer.
 - (C) n is a multiple of 2 only.
 - (D) n is a multiple of 3 only.
- 57. The M.I. of a hollow sphere about a diameter is
 - (A) Ma^2
 - (B) $\frac{1}{2}Ma^2$

 - (C) $\frac{2}{3}Ma^2$ (D) $\frac{2}{5}Ma^2$

- 58. If $\sum_{n=1}^{\infty} a_n (a_n > 0)$ is convergent, then
 - (A) $\sum_{n=1}^{\infty} \frac{a_n}{a_n+1}$ is convergent.
 - (B) $\sum_{n=1}^{\infty} \frac{a_n}{a_n+1}$ is divergent.
 - (C) $\sum_{n=1}^{\infty} \frac{a_n}{a_n+1}$ oscillates infinitely.
 - (D) no definite conclusion can be made regarding the convergence of $\sum_{n=1}^{\infty} \frac{a_n}{a_n+1}$.
- 59. If the solution of the primal of an LPP be optimal, then the dual solution is
 - (A) optimal.
 - (B) feasible but not optimal.
 - (C) not optimal.
 - (D) unbounded.
- 60. Perpendiculars PL, PM, PN are drawn from the point P(a, b, c) to the co-ordinate planes. The equation of the plane LMN is

(A)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

(B)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 2$$

(C)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$$

(D)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$$